3. If
is an infinite sequence of integers satisfying for some , then the sequence contains arbitrarily long arithmetic progressions.
4. For all positive integers and , there is a constant such that if and , , ..., satisfies , then of the numbers , , ..., are in arithmetic progression.
de Bruijn, N. G. "Commentary." Unpublished manuscript, pp. 116-124, 1977. http://alexandria.tue.nl/repository/freearticles/598841.pdf.Guy,
R. K. "Theorem of van der Waerden, Szemerédi's Theorem. Partitioning
the Integers into Classes; at Least One Contains an A.P." §E10 in Unsolved
Problems in Number Theory, 3rd ed. New York: Springer-Verlag, pp. 317-323,
2004.Honsberger, R. More
Mathematical Morsels. Washington, DC: Math. Assoc. Amer., p. 29, 1991.Khinchin,
A. Y. "Van der Waerden's Theorem on Arithmetic Progressions." Ch. 1
in Three
Pearls of Number Theory. New York: Dover, pp. 11-17, 1998.van
der Waerden, B. L. "Beweis einer Baudetschen Vermutung." Nieuw
Arch. Wisk.15, 212-216, 1927.van der Waerden, B. L.
"How the Proof of Baudet's Conjecture Was Found." Studies in Pure Mathematics
(Presented to Richard Rado). London: Academic Press, pp. 251-260, 1971.van
der Waerden, B. L. "Wie der Beweis der Vermutung von Baudet gefunden wurde."
Elem. Math.53, 139-148, 1998.