TOPICS
Search

van Lint-Schrijver Graph


The Van Lint-Schrijver Graph graph is a weakly regular Hamiltonian graph on 162 vertices with parameters (nu,k,lambda,mu)=(162,(6),(0),(0,1)). It is distance-regular with intersection array {6,5,5,4;1,1,26}, but is not distance-transitive.

It has graph spectrum (-6)^1(-3)^(50)0^(60)3^(50)6^1, and is therefore an integral graph. It has graph automorphism group order Aut(G)=116640.

It is a Hamiltonian graph.

The van Lint-Schrijver graph is implemented in the Wolfram Language as GraphData["VanLintSchrijverGraph"].


See also

Distance-Regular Graph, Distance-Transitive Graph, Weakly Regular Graph

Explore with Wolfram|Alpha

References

DistanceRegular.org. "van Lint-Schrijver Graph." http://www.distanceregular.org/graphs/vanlint-schrijver.html.van Lint, J. H. and Schrijver, A. "Construction of Strongly Regular Graphs, Two-Weight Codes and Partial Geometries by Finite Fields." Combinatorica 1, 63-73, 1981.

Cite this as:

Weisstein, Eric W. "van Lint-Schrijver Graph." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/vanLint-SchrijverGraph.html

Subject classifications