TOPICS
Search

q-Whipple Transformation


 _8phi_7[a,qa^(1/2),-qa^(1/2),b,c,d,e,q^(-N); a^(1/2),-a^(1/2),(aq)/b,(aq)/c,(aq)/d,(aq)/e,aq^(N+1);q,(aq^(N+2))/(bcde)] 
 =(((aq)/(de);q)_N)/(((aq)/d;q)_N((aq)/e;q)_N)_4phi_3[d,e,(aq)/(bc),q^(-N); (aq)/b,(aq)/c,deq^(-n)/a;q,q],

where _8phi_7 is a q-hypergeometric function.


Explore with Wolfram|Alpha

References

Bhatnagar, G. Inverse Relations, Generalized Bibasic Series, and their U(n) Extensions. Ph.D. thesis. Ohio State University, p. 35, 1995.Gasper, G. and Rahman, M. Basic Hypergeometric Series. Cambridge, England: Cambridge University Press, p. 35, 1990.

Referenced on Wolfram|Alpha

q-Whipple Transformation

Cite this as:

Weisstein, Eric W. "q-Whipple Transformation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/q-WhippleTransformation.html

Subject classifications