Andrews, G. E. Encyclopedia of Mathematics and Its Applications, Vol. 2: The Theory of Partitions.
Cambridge, England: Cambridge University Press, 1984.Bailey, W. N.
"The Analogue of Saalschütz's Theorem." §8.4 in Generalised
Hypergeometric Series. Cambridge, England: University Press, p. 68,
1935.Bhatnagar, G. Inverse Relations, Generalized Bibasic Series,
and their U(n) Extensions. Ph.D. thesis. Ohio State University, p. 30, 1995.Carlitz,
L. "Remark on a Combinatorial Identity." J. Combin. Th. Ser. A17,
256-257, 1974.Gasper, G. and Rahman, M. Basic
Hypergeometric Series. Cambridge, England: Cambridge University Press, p. 13,
1990.Gould, H. W. "A New Symmetrical Combinatorial Identity."
J. Combin. Th. Ser. A13, 278-286, 1972.Koepf, W. Hypergeometric
Summation: An Algorithmic Approach to Summation and Special Function Identities.
Braunschweig, Germany: Vieweg, pp. 25-26, 1998.Schilling A. and
Warnaar, S. O. "A Generalization of the q.-Saalschütz Sum and
the Burge Transform" 8 Sep 1999. http://arxiv.org/abs/math.QA/9909044.Watson,
G. N. "A New Proof of the Rogers-Ramanujan Identities." J. London
Math. Soc.4, 4-9, 1929.