TOPICS
Search

Young's Integral


Let f(x) be a real continuous monotonic strictly increasing function on the interval [0,a] with f(0)=0 and b<=f(a), then

 ab<=int_0^af(x)dx+int_0^bf^(-1)(y)dy,

where f^(-1)(y) is the inverse function. Equality holds iff b=f(a).


Explore with Wolfram|Alpha

References

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. 1099, 2000.

Referenced on Wolfram|Alpha

Young's Integral

Cite this as:

Weisstein, Eric W. "Young's Integral." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/YoungsIntegral.html

Subject classifications