TOPICS
Search

Wright Function


The entire function

 phi(rho,beta;z)=sum_(k=0)^infty(z^k)/(k!Gamma(rhok+beta)),

where rho>-1 and beta in C, named after the British mathematician E. M. Wright.


See also

Mittag-Leffler Function

Explore with Wolfram|Alpha

References

Gorenflo, R.; Luchko, Yu.; and Mainardi, F. "Analytical Properties and Applications of the Wright Function." Fractional Calc. Appl. Anal. 2, 383-415, 1999.

Referenced on Wolfram|Alpha

Wright Function

Cite this as:

Weisstein, Eric W. "Wright Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/WrightFunction.html

Subject classifications