A Woodall prime is a Woodall number
that is prime. The first few Woodall primes are 7, 23, 383, 32212254719, 2833419889721787128217599, ... (OEIS A050918),
corresponding to ,
3, 6, 30, 75, 81, 115, 123, 249, 362, 384, 462, 512, 751, 822, 5312, 7755, 9531,
12379, ... (OEIS A002234).
The following table summarizes large known Woodall primes. As of Mar. 2018, all have been checked (PrimeGrid).
| decimal digits | date |
1467763 | 441847 | Jun. 2007 |
2013992 | 606279 | Aug. 2007 |
2367906 | 712818 | Aug. 2007 |
3752948 | 1129757 | Dec. 2007 |
17016602 | 5122515 | Mar. 2018 |
See also
Integer Sequence Primes,
Mersenne Prime,
Woodall
Number
Explore with Wolfram|Alpha
References
Caldwell, C. K. "The Top Twenty: Woodall Primes." http://primes.utm.edu/top20/page.php?id=7#records.Keller,
W. "New Cullen Primes." Math. Comput. 64, 1733-1741, 1995.Leyland,
P. http://research.microsoft.com/~pleyland/factorization/cullen_woodall/2-.txt.PrimeGrid.
"Subprojects: Woodall Prime Search." http://www.primegrid.com/server_status_subprojects.php.PrimeGrid.
"PrimeGrid Primes: Subproject: (WOO) Woodall Prime Search." http://www.primegrid.com/primes/primes.php?project=WOO.Rodenkirch,
M. and Ballinger, R. "Woodall Primes: Definition and Status." http://www.prothsearch.net/woodall.html.Sloane,
N. J. A. Sequences A002234/M0820
and A050918 in "The On-Line Encyclopedia
of Integer Sequences."
Cite this as:
Weisstein, Eric W. "Woodall Prime." From
MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/WoodallPrime.html
Subject classifications