A Wilson prime is a prime satisfying
where
is the Wilson quotient , or equivalently,
The first few Wilson primes are 5, 13, and 563 (OEIS A007540 ). Crandall et al. (1997) showed there are no others less than (McIntosh 2004), a limit that has subsequently been
increased to
(Costa et al. 2012).
See also Brown Numbers ,
Wilson
Quotient ,
Wilson's Theorem
Explore with Wolfram|Alpha
References Costa, E.; Gerbicz, R.; and Harvey, D. "A Search for Wilson Primes." 5 Dec 2012. http://arxiv.org/abs/1209.3436 . Crandall,
R.; Dilcher, K; and Pomerance, C. "A search for Wieferich and Wilson Primes."
Math. Comput. 66 , 433-449, 1997. Gonter, R. H. and
Kundert, E. G. "All Numbers Up to Have Been Tested without Finding a New Wilson Prime."
Preprint, 1994. Havil, J. Gamma:
Exploring Euler's Constant. Princeton, NJ: Princeton University Press, p. 167,
2003. McIntosh, R. email to Paul Zimmermann. 9 Mar 2004. http://www.loria.fr/~zimmerma/records/Wieferich.status . Mersenne
Forum. "Wilson-Prime Search Practicalities." http://www.mersenneforum.org/showthread.php?t=16028 . Le
Lionnais, F. Les
nombres remarquables. Paris: Hermann, p. 56, 1983. Ribenboim,
P. "Wilson Primes." §5.4 in The
New Book of Prime Number Records. New York: Springer-Verlag, pp. 346-350,
1996. Sloane, N. J. A. Sequence A007540 /M3838
in "The On-Line Encyclopedia of Integer Sequences." Vardi,
I. Computational
Recreations in Mathematica. Reading, MA: Addison-Wesley, p. 73, 1991. Referenced
on Wolfram|Alpha Wilson Prime
Cite this as:
Weisstein, Eric W. "Wilson Prime." From
MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/WilsonPrime.html
Subject classifications More... Less...