TOPICS
Search

Weierstrass Product Theorem


Let any finite or infinite set of points having no finite limit point be prescribed, and associate with each of its points a definite positive integer as its order. Then there exists an entire function which has zeros to the prescribed orders at precisely the prescribed points, and is otherwise different from zero. Moreover, this function can be represented as a product from which one can read off again the positions and orders of the zeros. Furthermore, if G_0(z) is one such function, then

 G(z)=e^(h(z))G_0(z)

is the most general function satisfying the conditions of the problem, where h(z) denotes an arbitrary entire function.

This theorem is also sometimes simply known as Weierstrass's theorem. A spectacular example is given by the Hadamard product.


See also

Hadamard Product, Weierstrass's Theorem

Explore with Wolfram|Alpha

References

Knopp, K. "Weierstrass's Factor-Theorem." §1 in Theory of Functions Parts I and II, Two Volumes Bound as One, Part II. New York: Dover, pp. 1-7, 1996.Krantz, S. G. "The Weierstrass Factorization Theorem." §8.2 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 109-110, 1999.

Referenced on Wolfram|Alpha

Weierstrass Product Theorem

Cite this as:

Weisstein, Eric W. "Weierstrass Product Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/WeierstrassProductTheorem.html

Subject classifications