where is a generalized hypergeometric function and is the gamma function (Bailey 1935, p. 16; Koepf 1998, p. 32).
Watson's Theorem
See also
Generalized Hypergeometric Function, Watson-Whipple Transformation, Whipple's IdentityExplore with Wolfram|Alpha
References
Bailey, W. N. "Watson's Theorem." §3.3 in Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, p. 16, 1935.Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.Referenced on Wolfram|Alpha
Watson's TheoremCite this as:
Weisstein, Eric W. "Watson's Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/WatsonsTheorem.html