TOPICS
Search

Variation of Argument


VariationofArgument

Let [arg(f(z))] denote the change in the complex argument of a function f(z) around a contour gamma. Also let N denote the number of roots of f(z) in gamma and P denote the sum of the orders of all poles of f(z) lying inside gamma. Then

 [arg(f(z))]=2pi(N-P).
(1)

For example, the plots above shows the argument for a small circular contour gamma centered around z=0 for a function of the form f(z)=(z-1)/z^n (which has a single pole of order n and no roots in gamma) for n=1, 2, and 3.

Note that the complex argument must change continuously, so any "jumps" that occur as the contour crosses branch cuts must be taken into account.

To find [arg(f(z))] in a given region R, break R into paths and find [arg(f(z))] for each path. On a circular arc

 z=Re^(itheta),
(2)

let f(z) be a polynomial P(z) of degree n. Then

[argP(z)]=[arg(z^n(P(z))/(z^n))]
(3)
=[arg(z^n)]+[arg((P(z))/(z^n))].
(4)

Plugging in z=Re^(itheta) gives

 [arg(P(z))]=[arg(Re^(ithetan))]+[arg((P(Re^(itheta)))/(Re^(ithetan)))].
(5)

So as R->infty,

 lim_(R->infty)(P(Re^(itheta)))/(Re^(ithetan))=[constant]
(6)
 [(P(Re^(itheta)))/(Re^(ithetan))]=0,
(7)

and

 [arg(P(z))]=[arg(e^(ithetan))]=n(theta_2-theta_1).
(8)

For a real segment z=x,

 [arg(f(x))]=tan^(-1)[0/(f(x))]=0.
(9)

For an imaginary segment z=iy,

 [arg(f(iy))]={tan^(-1)(I[P(iy)])/(R[P(iy)])}_(theta_1)^(theta_2).
(10)

See also

Complex Argument, Contour

Explore with Wolfram|Alpha

References

Barnard, R. W.; Dayawansa, W.; Pearce, K.; and Weinberg, D. "Polynomials with Nonnegative Coefficients." Proc. Amer. Math. Soc. 113, 77-83, 1991.

Referenced on Wolfram|Alpha

Variation of Argument

Cite this as:

Weisstein, Eric W. "Variation of Argument." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/VariationofArgument.html

Subject classifications