A topological space that contains a homeomorphic image of every topological space of a certain class.
A metric space is said to be universal for a family of metric spaces if any space from is isometrically embeddable in . Fréchet (1910) proved that , the space of all bounded sequences of real numbers endowed with a supremum norm, is a universal space for the family of all separable metric spaces. Holsztynski (1978) proved that there exists a metric on , inducing the usual topology, such that every finite metric space embeds in (Ovchinnikov 2000).