TOPICS
Search

Triangular Matrix


An upper triangular matrix U is defined by

 U_(ij)={a_(ij)   for i<=j; 0   for i>j.
(1)

Written explicitly,

 U=[a_(11) a_(12) ... a_(1n); 0 a_(22) ... a_(2n); | | ... |; 0 0 ... a_(nn)].
(2)

A lower triangular matrix L is defined by

 L_(ij)={a_(ij)   for i>=j; 0   for i<j.
(3)

Written explicitly,

 L=[a_(11) 0 ... 0; a_(21) a_(22) ... 0; | | ... 0; a_(n1) a_(n2) ... a_(nn)].
(4)

See also

Hankel Matrix, Hessenberg Matrix, Hilbert Matrix, Lower Triangular Matrix, Matrix, Strictly Lower Triangular Matrix, Strictly Upper Triangular Matrix, Upper Triangular Matrix, Vandermonde Matrix

Explore with Wolfram|Alpha

References

Ayres, F. Jr. Schaum's Outline of Theory and Problems of Matrices. New York: Schaum, p. 10, 1962.

Referenced on Wolfram|Alpha

Triangular Matrix

Cite this as:

Weisstein, Eric W. "Triangular Matrix." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/TriangularMatrix.html

Subject classifications