One of a set of numbers defined in terms of an invariant generated by the finite cyclic covering spaces of a knot complement. The torsion numbers for knots up to 9 crossings were cataloged by Reidemeister (1948).
Torsion Number
See also
Knot InvariantExplore with Wolfram|Alpha
References
Reidemeister, K. Knotentheorie. New York: Chelsea, 1948.Rolfsen, D. "Torsion Numbers." §6A in Knots and Links. Wilmington, DE: Publish or Perish Press, pp. 145-146, 1976.Referenced on Wolfram|Alpha
Torsion NumberCite this as:
Weisstein, Eric W. "Torsion Number." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/TorsionNumber.html