TOPICS
Search

Three-Choice Polygon


ThreeChoicePolygon

A lattice polygon formed by a three-choice walk. The anisotropic perimeter and area generating function

 G(x,y,q)=sum_(m>=1)sum_(n>=1)sum_(a>=a)C(m,n,a)x^my^nq^a,

where C(m,n,a) is the number of polygons with 2m horizonal bonds, 2n vertical bonds, and area a, is not yet known in closed form, but it can be evaluated in polynomial time (Conway et al. 1997, Bousquet-Mélou 1999). The perimeter-generating function G(x,x,1) has a logarithmic singularity and so is not algebraic, but is known to be D-finite (Conway et al. 1997, Bousquet-Mélou 1999).

The anisotropic area and perimeter generating function G(x,y,q) satisfies an inversion relation of the form

 G(x,y,q)+y^2G(x/y,1/y,1/q)

(Bousquet-Mélou et al. 1999).


Explore with Wolfram|Alpha

References

Bousquet-Mélou, M.; Guttmann, A. J.; Orrick, W. P.; and Rechnitzer, A. "Inversion Relations, Reciprocity and Polyominoes." 23 Aug 1999. http://arxiv.org/abs/math.CO/9908123.Conway, A.; Cuttmann, A. J.; and Delest, M. "On the Number of Three-Choice Polygons." Math. Comput. Model. 26, 51-58, 1997.

Referenced on Wolfram|Alpha

Three-Choice Polygon

Cite this as:

Weisstein, Eric W. "Three-Choice Polygon." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Three-ChoicePolygon.html

Subject classifications