TOPICS
Search

Theta Series


The theta series of a lattice is the generating function for the number of vectors with norm n in the lattice.

Theta series for a number of lattices are implemented in the Wolfram Language as LatticeData[lattice, "ThetaSeriesFunction"].

The following table summarized lattice with closed-form theta series. Here, theta_n(q) is a Jacobi theta function.

latticetheta series generating function
Barnes-Wall lattice1/2[theta_2^(16)(q)+theta_3^(16)(q)+theta_4^(16)(q)+30theta_2^8(q)theta_3^8(q)]
body-centered cubic latticetheta_2(q^4)^3+theta_3^3(q^4)
Coxeter-Todd lattice9/(32)theta_2^6(q)theta_2(q^3)^6+[theta_2(q^4)theta_2(q^(12))+theta_3(q^4)theta_3(q^(12))]^6+(45)/(16)theta_2^4(q)[theta_2(q^4)theta_2(q^(12))+theta_3(q^4)theta_3(q^(12))]^2theta_2^4(q^3)
face-centered cubic lattice1/2[theta_3^3(q)+theta_4^3(q)]
hexagonal close packing lattice1/2theta_2(q^(8/3))[theta_2(q^(2/3))theta_2(q^2)+theta_3(q^(2/3))theta_3(q^2)]+[theta_3(q^(8/3))-1/2theta_2(q^(8/3))](theta_2(q^2)theta_2(q^6)+theta_3(q^2)theta_3(q^6))
hexagonal lattice(theta_3(q)^3+theta_3^3(1/3pi,q)+theta_3^3(2/3pi,q))/(3theta_3(q^3))
Leech lattice1/8[theta_2^8(q)+theta_3^8(q)+theta_4^8(q)]^3-(45)/(16)theta_2^8(q)theta_3^8(q)theta_4^8(q)
simple cubic latticetheta_3^3(q)
square latticetheta_3^2(q)
tetrahedral packing lattice1/2[theta_2^3(q)+theta_3^3(q)+theta_4^3(q)]

The following tables gives the first few terms of the series for these lattices.

latticeOEIStheta series
Barnes-Wall latticeA0084091+4320q^2+61440q^3+522720q^4+2211840q^5+...
body-centered cubic latticeA0040131+8q^3+6q^4+12q^8+...
Coxeter-Todd latticeA0040101+756q^4+4032q^6+20412q^8+60480q^(10)+...
face-centered cubic latticeA0040151+12q^2+6q^4+24q^6+12q^8+24q^(10)+...
hexagonal close packing lattice1+6q^(4/3)+6q^2+2q^(8/3)+6q^(10/3)+12q^(14/3)+12q^(16/3)+...
hexagonal lattice1+6q^2+6q^6+6q^8+...
Leech latticeA0084081+196560q^4+16773120q^6+398034000q^8+4629381120q^(10)+...
simple cubic latticeA0058751+6q+12q^2+8q^3+6q^4+24q^5+24q^6+12q^8+30q^9+24q^(10)+...
square latticeA0040181+4q+4q^2+4q^4+8q^5+4q^8+4q^9+8q^(10)+...
tetrahedral packing lattice1+4q^(3/4)+12q^2+12q^(11/4)+6q^4+12q^(19/4)+24q^6+16q^(27/4)+...

See also

Coxeter-Todd Lattice, Eisenstein Series, Leech Lattice

Explore with Wolfram|Alpha

References

Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, 1993.Sloane, N. J. A. Sequences A004010/M5478, A004013/M4473, A004015/M4821, A004018/M3218, A005875/M4092, A008408, and A008409 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Theta Series

Cite this as:

Weisstein, Eric W. "Theta Series." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ThetaSeries.html

Subject classifications