A tesseral harmonic is a spherical harmonic of the form . These harmonics are so named
because the curves on which they vanish are
parallels of latitude and
meridians, which divide the surface of a sphere into quadrangles
whose angles are right angles (Whittaker and Watson 1990, p. 392).
Resolving
into factors linear in
, multiplied by
when
is odd, then replacing
by
allows the tesseral harmonics to be expressed as products
of factors linear in
,
,
and
multiplied by one of 1,
,
,
,
,
,
, and
(Whittaker and Watson 1990, p. 536).