The "ternary" Champernowne constant can be defined by concatenating the ternary
representations of the integers
(OEIS A054635 and A077771). This has continued fraction [0, 1, 1, 2, 37,
1, 162, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 1, 3068518062211324, 2, 1, ...] (OEIS A077772),
which like the normal Champernowne constant,
displays sporadic large terms.
See also
Binary Champernowne Constant,
Champernowne Constant
Explore with Wolfram|Alpha
References
Sloane, N. J. A. Sequences A054635, A077771, and A077772
in "The On-Line Encyclopedia of Integer Sequences."
Cite this as:
Weisstein, Eric W. "Ternary Champernowne Constant."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/TernaryChampernowneConstant.html
Subject classifications