"The" Sylvester graph is a quintic graph on 36 nodes and 90 edges that is the unique distance-regular
graph with intersection array (Brouwer et al. 1989, §13.1.2; Brouwer
and Haemers 1993). It is a subgraph of the Hoffman-Singleton
graph obtainable by choosing any edge, then deleting the 14 vertices within distance
2 of that edge.
Brouwer, A. E. "Sylvester Graph." http://www.win.tue.nl/~aeb/drg/graphs/Sylvester.html.Brouwer, A. E.; Cohen, A. M.; and Neumaier, A. §13.1.2 in Distance
Regular Graphs. New York: Springer-Verlag, 1989.Brouwer, A. E.
and Haemers, W. H. "The Gewirtz Graph: An Exercise in the Theory of Graph
Spectra." European J. Combin.14, 397-407, 1993.DistanceRegular.org.
"Sylvester Graph." http://www.distanceregular.org/graphs/sylvester.html.Guy,
R. K. "Monthly Unsolved Problems, 1969-1987." Amer. Math. Monthly94,
961-970, 1987.Guy, R. K. "Unsolved Problems Come of Age."
Amer. Math. Monthly96, 903-909, 1989.