An attracting set that has zero measure in the embedding phase space and has fractal
dimension. Trajectories within a strange attractor appear to skip around randomly.
A selection of strange attractors for a general quadratic
map
(1)
(2)
are illustrated above, where the letters to stand for coefficients of the quadratic from to 1.2 in steps of 0.1 (Sprott 1993c). These represent
a small selection of the approximately 1.6% of all possible such maps that are chaotic (Sprott
1993bc).
Benmizrachi, A.; Procaccia, I.; and Grassberger, P. "Characterization of Experimental (Noisy) Strange Attractors." Phys. Rev. A29,
975-977, 1984.Dewdney, A. K. "Probing the Strange Attractors
of Chaos." Sci. Amer.235, 90-93, 1976.Farmer, J. D.;
Ott, E.; and Yorke, J. A. "The Dimension of Chaotic Attractors." Physica
7D, 153, 1983.Gleick, J. "Strange Attractors." Chaos:
Making a New Science. New York: Penguin Books, pp. 119-153, 1988.Grassberger,
P. "On the Hausdorff Dimension of Fractal Attractors." J. Stat. Phys.26,
173-179, 1981.Grassberger, P. and Procaccia, I. "Measuring the
Strangeness of Strange Attractors." Physica D9, 189-208, 1983a.Grassberger,
P. and Procaccia, I. "Characterization of Strange Attractors." Phys.
Rev. Let.50, 346-349, 1983b.Lauwerier, H. Fractals:
Endlessly Repeated Geometric Figures. Princeton, NJ: Princeton University
Press, pp. 137-138, 1991.Peitgen, H.-O. and Richter, D. H.
The
Beauty of Fractals: Images of Complex Dynamical Systems. New York: Springer-Verlag,
1986.Pickover, C. "A Note on Rendering 3-D Strange-Attractors."
Comput. & Graphics12, 263, 1988.Sprott, J. C.
Strange
Attractors: Creating Patterns in Chaos. New York: Henry Holt, 1993a.Sprott,
J. C. "How Common Is Chaos?" Phys. Lett. A173, 21,
1993b.Sprott, J. C. "Automatic Generation of Strange Attractors."
Comput. & Graphics17, 325-332, 1993c. Reprinted in Chaos
and Fractals, A Computer Graphical Journey: Ten Year Compilation of Advanced Research
(Ed. C. A. Pickover). Amsterdam, Netherlands: Elsevier, pp. 53-60,
1998.Viana, M. "What's New on Lorenz Strange Attractors."
Math. Intell.22, 6-19.