Let and define to be the least integer greater than which cannot be written as the sum of at most addends among the terms , , ..., . This defines the -Stöhr sequence. The first few of these are given in the following table.
Stöhr Sequence
See also
Greedy Algorithm, Integer Relation, Postage Stamp Problem, s-Additive Sequence, Subset Sum Problem, Sum-Free Set, Ulam SequenceExplore with Wolfram|Alpha
References
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 233, 1994.Mossige, S. "The Postage Stamp Problem: An Algorithm to Determine the -Range on the -Range Formula on the Extremal Basis Problem for ." Math. Comput. 69, 325-337, 2000.Selmer, E. S. "On Stöhr's Recurrent -Bases for ." Kgl. Norske Vid. Selsk. Skrifter 3, 1-15, 1986.Selmer, E. S. and Mossige, S. "Stöhr Sequences in the Postage Stamp Problem." Bergen Univ. Dept. Pure Math., No. 32, Dec. 1984.Sloane, N. J. A. Sequences A026474, A033627, A051039, and A051040 in "The On-Line Encyclopedia of Integer Sequences."Referenced on Wolfram|Alpha
Stöhr SequenceCite this as:
Weisstein, Eric W. "Stöhr Sequence." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/StoehrSequence.html