A stochastic matrix, also called a probability matrix, probability transition matrix, transition matrix, substitution matrix, or Markov matrix, is matrix used to characterize transitions for a finite Markov chain, Elements of the matrix must be real numbers in the closed interval [0, 1].
A completely independent type of stochastic matrix is defined as a square matrix with entries in a field such that the sum of elements in each column equals 1. There
are two nonsingular
stochastic matrices over
(i.e., the integers mod 2),
There are six nonsingular stochastic matrices over
,
In fact, the set
of all nonsingular stochastic
matrices over a field
forms a group
under matrix multiplication. This group
is called the stochastic group.
The following tables give the number of distinct stochastic matrices (and distinct nonsingular stochastic matrices) over for small
.
stochastic | |
2 | 1, 4, 64, 4096, ... |
3 | 1, 9, 729, ... |
4 | 1, 16, 4096, ... |
stochastic nonsingular | |
2 | 1, 2, 24, 1440, ... |
3 | 1, 6, 450, ... |
4 | 1, 12, 3108, ... |