TOPICS
Search

Stick Number


Let the stick number s(K) of a knot K be the least number of straight sticks needed to make a knot K. The smallest stick number of any knot is s(T)=6, where T is the trefoil knot. If J and K are knots, then

 s(J+K)<=s(J)+s(K)+1.

For a nontrivial knot K, let c(K) be the link crossing number (i.e., the least number of crossings in any projection of K). Then

 1/2[5+sqrt(25+8(c(K)-2))]<=s(K)<=2c(K).

Stick numbers are implemented in the Wolfram Language as KnotData[knot, "StickNumber"].

The following table gives the stick number for knots on 10 or fewer crossings.

0_138_(16)99_(25)1110_61210_(36)1110_(66)1210_(96)1110_(126)1110_(156)10
3_168_(17)99_(26)1010_71210_(37)1210_(67)1110_(97)1210_(127)1010_(157)10
4_178_(18)99_(27)1110_81210_(38)1210_(68)1210_(98)1110_(128)1010_(158)10
5_188_(19)89_(28)1010_91110_(39)1310_(69)1110_(99)1110_(129)1010_(159)10
5_288_(20)89_(29)910_(10)1210_(40)1110_(70)1210_(100)1210_(130)1010_(160)10
6_188_(21)99_(30)1010_(11)1110_(41)1110_(71)1210_(101)1210_(131)1110_(161)10
6_289_1109_(31)1010_(12)1110_(42)1110_(72)1210_(102)1010_(132)1010_(162)10
6_389_2119_(32)1010_(13)1110_(43)1210_(73)1310_(103)1110_(133)1110_(163)10
7_199_3119_(33)1010_(14)1110_(44)1210_(74)1210_(104)1010_(134)1010_(164)11
7_299_4109_(34)910_(15)1210_(45)1110_(75)1210_(105)1210_(135)1010_(165)10
7_399_5109_(35)1010_(16)1110_(46)1210_(76)1310_(106)1110_(136)10
7_499_6119_(36)1110_(17)1110_(47)1210_(77)1210_(107)1010_(137)11
7_599_7109_(37)1010_(18)1210_(48)1010_(78)1210_(108)1010_(138)11
7_699_8109_(38)1010_(19)1110_(49)1110_(79)1110_(109)1010_(139)10
7_799_9109_(39)1010_(20)1210_(50)1210_(80)1310_(110)1210_(140)10
8_1109_(10)109_(40)910_(21)1210_(51)1210_(81)1110_(111)1110_(141)10
8_2109_(11)119_(41)910_(22)1210_(52)1110_(82)1210_(112)1110_(142)11
8_3109_(12)109_(42)910_(23)1210_(53)1210_(83)1110_(113)1010_(143)11
8_4109_(13)109_(43)1010_(24)1210_(54)1210_(84)1410_(114)1010_(144)10
8_5109_(14)109_(44)910_(25)1110_(55)1210_(85)1110_(115)1110_(145)10
8_6109_(15)119_(45)1010_(26)1210_(56)1110_(86)1110_(116)1010_(146)10
8_7109_(16)109_(46)910_(27)1110_(57)1210_(87)1110_(117)1210_(147)10
8_8109_(17)109_(47)910_(28)1210_(58)1210_(88)1110_(118)1110_(148)11
8_9109_(18)119_(48)1010_(29)1110_(59)1110_(89)1110_(119)1010_(149)11
8_(10)109_(19)109_(49)910_(30)1210_(60)1110_(90)1110_(120)1010_(150)10
8_(11)109_(20)1010_11110_(31)1210_(61)1110_(91)1110_(121)1010_(151)10
8_(12)109_(21)1110_21110_(32)1110_(62)1210_(92)1110_(122)1010_(152)11
8_(13)109_(22)1010_31210_(33)1110_(63)1110_(93)1110_(123)1110_(153)11
8_(14)109_(23)1110_41110_(34)1210_(64)1310_(94)1110_(124)1010_(154)11
8_(15)109_(24)1010_51110_(35)1210_(65)1210_(95)1210_(125)1010_(155)10

See also

Link Crossing Number, Triangle Counting

Explore with Wolfram|Alpha

References

Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 27-30, 1994.

Referenced on Wolfram|Alpha

Stick Number

Cite this as:

Weisstein, Eric W. "Stick Number." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/StickNumber.html

Subject classifications