TOPICS
Search

Steiner-Lehmus Theorem


Any triangle that has two equal angle bisectors (each measured from a polygon vertex to the opposite sides) is an isosceles triangle. This theorem is also called the "internal bisectors problem" and "Lehmus' theorem."


See also

Angle Bisector, Isosceles Triangle, Thomsen's Figure

Explore with Wolfram|Alpha

References

Abu-Saymeh, S.; Hajja, M.; and ShahAli, H. A. "Another Variation on the Steiner-Lehmus Theme." Forum. Geom. 8, 131-140, 2008. http://forumgeom.fau.edu/FG2008volume8/FG200817index.html.Altshiller-Court, N. College Geometry: A Second Course in Plane Geometry for Colleges and Normal Schools, 2nd ed., rev. enl. New York: Barnes and Noble, pp. 72-73, 1952.Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New York: Wiley, p. 9, 1969.Coxeter, H. S. M. and Greitzer, S. L. "The Steiner-Lehmus Theorem." §1.5 in Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 14-16, 1967.Gardner, M. Martin Gardner's New Mathematical Diversions from Scientific American. New York: Simon and Schuster, pp. 198-199 and 206-207, 1966.Henderson, A. "The Lehmus-Steiner-Terquem Problem in Global Survey." Scripta Math. 21, 223-232 and 309-312, 1955.Hunter, J. A. H. and Madachy, J. S. Mathematical Diversions. New York: Dover, pp. 72-73, 1975.Neuberg, J. Bibliographie du triangle et du tétraèdre. p. 337, 1923.Oxman, V. "On the Existence of Triangles with Given Lengths of One Side and Two Adjacent Angle Bisectors." Forum Geom. 4, 215-218, 2004. http://forumgeom.fau.edu/FG2004volume4/FG200425index.html.Thébault, V. "Sur le triangle isoscèle." Mathesis 44, 97, 1930.

Referenced on Wolfram|Alpha

Steiner-Lehmus Theorem

Cite this as:

Weisstein, Eric W. "Steiner-Lehmus Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Steiner-LehmusTheorem.html

Subject classifications