TOPICS
Search

Steffensen's Inequality


Let f(x) be a nonnegative and monotonic decreasing function in [a,b] and g(x) such that 0<=g(x)<=1 in [a,b], then

 int_(b-k)^bf(x)dx<=int_a^bf(x)g(x)dx<=int_a^(a+k)f(x)dx,

where

 k=int_a^bg(x)dx.

Explore with Wolfram|Alpha

References

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. 1099, 2000.

Referenced on Wolfram|Alpha

Steffensen's Inequality

Cite this as:

Weisstein, Eric W. "Steffensen's Inequality." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SteffensensInequality.html

Subject classifications