TOPICS
Search

Standard Normal Distribution


StandardNormalDistribution

A standard normal distribution is a normal distribution with zero mean (mu=0) and unit variance (sigma^2=1), given by the probability density function and distribution function

P(x)=1/(sqrt(2pi))e^(-x^2/2)
(1)
D(x)=1/2[erf(x/(sqrt(2)))+1]
(2)

over the domain x in (-infty,infty).

It has mean, variance, skewness, and kurtosis excess given by

mu=0
(3)
sigma^2=1
(4)
gamma_1=0
(5)
gamma_2=0.
(6)

The first quartile of the standard normal distribution occurs when D(x)=1/4, which is

x_(1/4)=-sqrt(2)erf^(-1)(1/2)
(7)
=-0.67448975019...
(8)

(OEIS A092678; Kenney and Keeping 1962, p. 134), where erf^(-1)(x) is the inverse erf function. The absolute value of this is known as the probable error.


See also

Erf, Normal Distribution, Normal Distribution Function, Probable Error, Probability Integral, Tetrachoric Function

Explore with Wolfram|Alpha

References

Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 129 and 134, 1962.Sloane, N. J. A. Sequence A092678 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Standard Normal Distribution

Cite this as:

Weisstein, Eric W. "Standard Normal Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/StandardNormalDistribution.html

Subject classifications