TOPICS
Search

Spindle Torus


SpindleTorusSolid
SpindleTorusCutaway
SpindleTorusSection

A spindle torus is one of the three standard tori given by the parametric equations

x=(c+acosv)cosu
(1)
y=(c+acosv)sinu
(2)
z=asinv
(3)

with c<a. The exterior surface is called an apple surface and the interior of a lemon surface. The above left figure shows a spindle torus, the middle a cutaway, and the right figure shows a cross section of the spindle torus through the xz-plane. The inversion of a spindle torus is a spindle cyclide (or parabolic spindle cyclide).

Meissner polyhedra have curved boundaries that consist of pieces of spheres and spindle tori (Hynd 2023).


See also

Cyclide, Horn Cyclide, Horn Torus, Ring Torus, Standard Tori, Torus

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Gray, A.; Abbena, E.; and Salamon, S. Modern Differential Geometry of Curves and Surfaces with Mathematica, 3rd ed. Boca Raton, FL: CRC Press, pp. 305-306, 2006.Hynd, R. "The Density of Meissner Polyhedra." 8 Apr 2023. https://arxiv.org/abs/2304.04035.Pinkall, U. "Cyclides of Dupin." Ch. 3, §3 in Mathematical Models from the Collections of Universities and Museums: Commentary. (Ed. G. Fischer). Braunschweig, Germany: Vieweg, pp. 28-30, 1986.Pinkall, U. "Dupinsche Zykliden." Ch. 3, §3 in Mathematische Modelle aus den Sammlungen von Universitäten und Museen: Kommentarband (Ed. G. Fischer). Braunschweig, Germany: Vieweg, pp. 30-33, 1986.

Referenced on Wolfram|Alpha

Spindle Torus

Cite this as:

Weisstein, Eric W. "Spindle Torus." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SpindleTorus.html

Subject classifications