The special orthogonal group is the subgroup of the elements of general orthogonal group with determinant 1. (often written ) is the rotation group for three-dimensional space.
Special Orthogonal Group
See also
Bipolyhedral Group, General Orthogonal Group, Icosahedral Group, Rotation Group, Special Linear Group, Special Unitary GroupExplore with Wolfram|Alpha
References
Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; and Wilson, R. A. "The Groups , , , and , and ." §2.4 in Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford, England: Clarendon Press, pp. xi-xii, 1985.Referenced on Wolfram|Alpha
Special Orthogonal GroupCite this as:
Weisstein, Eric W. "Special Orthogonal Group." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SpecialOrthogonalGroup.html