If the period of the aliquot cycle is 1, the number is called a perfect number. If the period is 2, the two numbers are called an amicable
pair. In general, if the period is , the number is called sociable of order . For example, 1264460 is a sociable number of order four since
its aliquot sequence is 1264460, 1547860, 1727636,
1305184, 1264460, ....
Only two groups of sociable numbers were known prior to 1970, namely the sets of orders 5 and 28 discovered by Poulet (1918). In 1970, Cohen discovered nine groups of order 4.
The first few sociable numbers are 12496, 14316, 1264460, 2115324, 2784580, 4938136, ... (OEIS A003416), which have orders 5, 28,
4, 4, 4, 4, ... (OEIS A052470). The following
table summarizes the smallest members of known social cycles as well as the
number of such cycles known (Moews). Excluding perfect numbers, a total of 152 sociable
cycles are known as of Feb. 2009 (Pedersen).
Borho, W. "Über die Fixpunkte der -fach iterierten Teilerersummenfunktion." Mitt. Math.
Gesellsch. Hamburg9, 34-48, 1969.Cohen, H. "On Amicable
and Sociable Numbers." Math. Comput.24, 423-429, 1970.Cohen,
G. L. and te Riele, H. J. J. "Iterating the Sum-of-Divisors Function."
Amsterdam, Netherlands: Centrum voor Wiskunde en Informatica Report NM-R9525 1995.Creyaufmüller,
W. "Aliquot Sequences." http://www.aliquot.de/aliquote.htm.Devitt,
J. S.; Guy, R. K.; and Selfridge, J. L. Third Report on Aliquot
Sequences, Congr. Numer. XVIII, Proc. 6th Manitoba Conf. Numerical Math, pp. 177-204,
1976.Erdős, P.; Granville, A.; Pomerance, C.; and Spiro, C. "On
the Normal Behavior of Iterates of Some Arithmetical Functions." Analytic
Number Theory, Proc. Conf. in Honor of P. T. Bateman, Allerton Park, 1989.
Boston: Birkhäuser, pp. 165-204, 1990.Flammenkamp, A. "New
Sociable Numbers." Math. Comput.56, 871-873, 1991.Gardner,
M. "Perfect, Amicable, Sociable." Ch. 12 in Mathematical
Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind
from Scientific American. New York: Vintage, pp. 160-171, 1978.Guy,
R. K. "Aliquot Cycles or Sociable Numbers." §B7 in Unsolved
Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 62-63,
1994.Madachy, J. S. Madachy's
Mathematical Recreations. New York: Dover, pp. 145-146, 1979.Moews,
D. "A List of Aliquot Cycles of Length Greater than 2." Rev. Jul. 20,
2005. http://djm.cc/sociable.txt.Moews,
D. "Sociable Numbers." http://djm.cc/amicable.html#sociable.Moews,
D. and Moews, P. C. "A Search for Aliquot Cycles Below ." Math. Comput.57, 849-855, 1991.Moews,
D. and Moews, P. C. "A Search for Aliquot Cycles and Amicable Pairs."
Math. Comput.61, 935-938, 1993.Pedersen, J. A. M.
"Tables of Aliquot Cycles." http://amicable.homepage.dk/tables.htm.Poulet,
P. Question 4865. L'interméd. des Math.25, 100-101, 1918.Root,
S. Item 61 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge,
MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 23, Feb. 1972.
http://www.inwap.com/pdp10/hbaker/hakmem/number.html#item61.Sloane,
N. J. A. Sequences A003416, A052470,
A090615, and A119478
in "The On-Line Encyclopedia of Integer Sequences."te Riele,
H. J. J. "Perfect Numbers and Aliquot Sequences." In Computational
Methods in Number Theory, Part I. (Ed. H. W. Lenstra Jr. and R. Tijdeman).
Amsterdam, Netherlands: Mathematisch Centrum, pp. 141-157, 1982.