The Simson cubic is the triangle cubic that is the locus of tripoles of the Simson lines of a triangle . It has trilinear equation
It passes through Kimberling centers for , 2394, 2395, 2396, 2397, 2398, 2399, 2400, 2401, 2402, 2403,
2404, 2405, 2406, 2407, 2408, 2409, 2410, 2411, 2412, 2413, 2414, 2415, 2416, 2417,
2418, and 2419.
See also
Triangle Cubic
Explore with Wolfram|Alpha
References
Ehrmann, J.-P. and Gibert, B. "The Simson Cubic." Forum Geom. 1, 107-114, 2001. http://forumgeom.fau.edu/FG2001volume1/FG200115index.html.Gibert,
B. "Simson Cubic." http://perso.wanadoo.fr/bernard.gibert/Exemples/k010.html.Referenced
on Wolfram|Alpha
Simson Cubic
Cite this as:
Weisstein, Eric W. "Simson Cubic." From
MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SimsonCubic.html
Subject classifications