TOPICS
Search

Simson Cubic


SimsonCubic

The Simson cubic is the triangle cubic that is the locus of tripoles of the Simson lines of a triangle DeltaABC. It has trilinear equation

 (a^2+b^2-c^2)aalphabbetacgamma-sum_(cyclic)S_Aaalpha(b^2beta^2+c^2gamma^2)=0.

It passes through Kimberling centers X_n for n=2, 2394, 2395, 2396, 2397, 2398, 2399, 2400, 2401, 2402, 2403, 2404, 2405, 2406, 2407, 2408, 2409, 2410, 2411, 2412, 2413, 2414, 2415, 2416, 2417, 2418, and 2419.


See also

Triangle Cubic

Explore with Wolfram|Alpha

References

Ehrmann, J.-P. and Gibert, B. "The Simson Cubic." Forum Geom. 1, 107-114, 2001. http://forumgeom.fau.edu/FG2001volume1/FG200115index.html.Gibert, B. "Simson Cubic." http://perso.wanadoo.fr/bernard.gibert/Exemples/k010.html.

Referenced on Wolfram|Alpha

Simson Cubic

Cite this as:

Weisstein, Eric W. "Simson Cubic." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SimsonCubic.html

Subject classifications