TOPICS
Search

Silverman Constant


sum_(n=1)^(infty)1/(phi(n)sigma_1(n))=product_(p prime)(1+sum_(k=1)^(infty)1/(p^(2k)-p^(k-1)))
(1)
=1.786576459...
(2)

(OEIS A093827), where phi(n) is the totient function and sigma_1(n) is the divisor function.


Explore with Wolfram|Alpha

References

Finch, S. "Series Involving Arithmetic Functions." Jan. 24, 2007. http://algo.inria.fr/csolve/arth.pdf.Rusin, D. "Re: A Peculiar Sum" In The Mathematical Atlas. http://www.math.niu.edu/~rusin/known-math/96/numtheor.series.Sloane, N. J. A. Sequence A093827 in "The On-Line Encyclopedia of Integer Sequences."Zimmermann, P. "Re: A Peculiar Sum." http://algo.inria.fr/csolve/zimmermn.html.

Referenced on Wolfram|Alpha

Silverman Constant

Cite this as:

Weisstein, Eric W. "Silverman Constant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SilvermanConstant.html

Subject classifications