The plot above shows the binary representations for the first 255 (top figure) and 511 (bottom figure) terms of a flattened Seidel-Entringer-Arnold triangle.
Arnold, V. I. "Bernoulli-Euler Updown Numbers Associated with Function Singularities, Their Combinatorics, and Arithmetics."
Duke Math. J.63, 537-555, 1991.Arnold, V. I. "Snake
Calculus and Combinatorics of Bernoulli, Euler, and Springer Numbers for Coxeter
Groups." Russian Math. Surveys47, 3-45, 1992.Conway,
J. H. and Guy, R. K. In The
Book of Numbers. New York: Springer-Verlag, 1996.Dumont, D.
"Further Triangles of Seidel-Arnold Type and Continued Fractions Related to
Euler and Springer Numbers." Adv. Appl. Math.16, 275-296, 1995.Entringer,
R. C. "A Combinatorial Interpretation of the Euler and Bernoulli Numbers."
Nieuw Arch. Wisk.14, 241-246, 1966.Millar, J.; Sloane,
N. J. A.; and Young, N. E. "A New Operation on Sequences: The
Boustrophedon Transform." J. Combin. Th. Ser. A76, 44-54,
1996.Seidel, I. "Über eine einfache Entstehungsweise der Bernoullischen
Zahlen und einiger verwandten Reihen." Sitzungsber. Münch. Akad.4,
157-187, 1877.Sloane, N. J. A. Sequence A008280
in "The On-Line Encyclopedia of Integer Sequences."