TOPICS
Search

Schur's Problem


Schur (1916) proved that no matter how the set of positive integers less than or equal to |_n!e_| (where |_x_| is the floor function) is partitioned into n classes, one class must contain integers x, y, z such that x+y=z, where x and y are not necessarily distinct. The least integer S(n) with this property is known as the Schur number. The upper bound has since been slightly improved to |_n!(e-1/24)_|.


See also

Combinatorics, Ramsey Number, Schur Number, Schur's Partition Theorem, Sum-Free Set

Explore with Wolfram|Alpha

References

Abbott, H. L. and Hanson, D. "A Problem of Schur and Its Generalizations." Acta Arith. 20, 175-187, 1972.Abbott, H. L. and Moser, L. "Sum-Free Sets of Integers." Acta Arith. 11, 393-396, 1966.Beutelspacher, A. and Brestovansky, W. "Generalized Schur Numbers." In Combinatorial Theory: Proceedings of a Conference Held at Schloss Rauischholzhausen, May 6-9, 1982 (Ed. D. Jungnickel and K. Vedder). Berlin: Springer-Verlag, pp. 30-38, 1982.Choi, S. L. G. "The Largest Sum-Free Subsequence from a Sequence of n Numbers." Proc. Amer. Math. Soc. 39, 42-44, 1973.Choi, S. L. G.; Komlós, J.; and Szemerédi, R. "On Sum-Free Subsequences." Trans. Amer. Math. Soc. 212, 307-313, 1975.Erdős, P. "Some Problems and Results in Number Theory." In Number Theory and Combinatorics: Japan 1984 (Ed. J. Akiyama). Singapore: World Scientific, pp. 65-87, 1985.Guy, R. K. "Schur's Problem. Partitioning Integers into Sum-Free Classes" and "The Modular Version of Schur's Problem." §E11 and E12 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 209-212, 1994.Irving, R. W. "An Extension of Schur's Theorem on Sum-Free Partitions." Acta Arith. 25, 55-63, 1973.Schönheim, J. "On Partitions of the Positive Integers with no x, y, z Belonging to Distinct Classes Satisfying x+y=z." In Number Theory: Proceedings of the First Conference of the Canadian Number Theory Association Held at the Banff Center, Banff, Alberta, April 17-27, 1988 (Ed. R. A. Mollin). Berlin: de Gruyter, pp. 515-528, 1990.Wallis, W. D.; Street, A. P.; and Wallis, J. S. Combinatorics: Room Squares, Sum-free Sets, Hadamard Matrices. New York: Springer-Verlag, 1972.

Referenced on Wolfram|Alpha

Schur's Problem

Cite this as:

Weisstein, Eric W. "Schur's Problem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SchursProblem.html

Subject classifications