TOPICS
Search

Schmidt's Problem


Schmidt (1993) proposed the problem of determining if for any integer r>=2, the sequence of numbers {c_k^((r))}_(k=1)^infty defined by the binomial sums

 sum_(k=0)^n(n; k)^r(n+k; k)^r=sum_(k=0)^n(n; k)(n+k; k)c_k^((r))
(1)

are all integers.

The following table gives the first few values of sum_(k=0)^(n)(n; k)^r(n+k; k)^r for small r.

rOEISvalues
1A0018501, 3, 13, 63, 321, 1683, 8989, 48639, ...
2A0052591, 5, 73, 1445, 33001, 819005, ...
3A0928131, 9, 433, 36729, 3824001, 450954009, ...
4A0928141, 17, 2593, 990737, 473940001, ...
5A0928151, 33, 15553, 27748833, 61371200001, ...

This was proved by Strehl (1993, 1994) and Schmidt (1995) for the case r=2, corresponding to the Franel numbers. Strehl (1994) also found an explicit expression for the case r=3. The resulting identities for r=2,3 are therefore known as the Strehl identities. The problem was restated in Graham et al. (1994, pp. 256 and 549), who indicated that H. S. Wilf had shown c_n^((r)) to be an integer for any r for n<=9 (Zudilin 2004).

The problem was answered in the affirmative by Zudilin (2004), who found explicit expressions for all c_n^((r)). Particular cases include

c_n^((2))=sum_(j=0)^(n)(n; j)^3
(2)
=sum_(j=0)^(n)(n; j)^2(2j; n)
(3)
c_n^((3))=sum_(j=0)^(n)(2j; j)^2(2j; n-j)(n; j)^2
(4)
c_n^((4))=sum_(j=0)^(n)(2j; j)^3(n; j)sum_(k=0)^(n)(k+j; k-j)(j; n-k)(k; j)(2j; k-j)
(5)
c_n^((5))=sum_(j=0)^(n)(2j; j)^4(n; j)^2sum_(k=0)^(n)(k+j; k-j)^2(2j; n-k)(2j; k-j),
(6)

with values for r>5 given by

c_n^((2s))=sum_(j=0)^(n)(2j; j)^(2s-1)(n; j)sum_(k_1=0)^(n)(j; n-k_1)(k_1; j)(k_1+j; k_1-j)sum_(k_2=0)^(n)(2j; k_1-k_2)(k_2+j; k_2-j)^2...sum_(k_(s-1)=0)^(n)(2j; k_(s-2)-k_(s-1))(k_(s-1)+j; k_(s-1)-j)^2(2j; k_(s-1)-j)
(7)
c_n^((2s+1))=sum_(j=0)^(n)(2j; j)^(2s)(n; j)sum_(k_1=0)^(n)(2j; n-k_1)(k_1+j; k_1-j)^2sum_(k_2=0)^(n)(2j; k_1-k_2)(k_2+j; k_2-j)^2...sum_(k_(s-1)=0)^(n)(2j; k_(s-2)-k_(s-1))(k_(s-1)+j; k_(s-1)-j)^2(2j; k_(s-1)-j)
(8)

(Zudilin 2004).

The following table summarizes the sequence of c_n^((r)) for small r. Note that c_n^((2)) are precisely the Franel numbers.

rOEIS{c_n^((r))}
2A0001721, 2, 10, 56, 346, 2252, 15184, 104960, ...
3A0006581, 4, 68, 1732, 51076, 1657904, 57793316, ...
4A0928681, 8, 424, 48896, 6672232, 1022309408, ...

See also

Apéry Number, Binomial Sums, Franel Number, Strehl Identities

Explore with Wolfram|Alpha

References

Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.Schmidt, A. L. "Generalized q-Legendre Polynomials." J. Comput. Appl. Math. 49, 243-249, 1993.Schmidt, A. L. "Legendre Transforms and Apéry's Sequences." J. Austral. Math. Soc. Ser. A 58, 358-375, 1995.Sloane, N. J. A. Sequences A000172/M1971, A001850/M2942, A005259/M4020, A000658, A092813, A092814, A092815, and A092868 in "The On-Line Encyclopedia of Integer Sequences."Strehl, V. "Binomial Sums and Identities." Maple Technical Newsletter 10, 37-49, 1993.Strehl, V. "Binomial Identities--Combinatorial and Algorithmic Aspects." Discrete Math. 136, 309-346, 1994.Zudilin, W. "On a Combinatorial Problem of Asmus Schmidt." Elec. J. Combin. 11, R22, 1-8, 2004. http://www.combinatorics.org/Volume_11/Abstracts/v11i1r22.html.

Referenced on Wolfram|Alpha

Schmidt's Problem

Cite this as:

Weisstein, Eric W. "Schmidt's Problem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SchmidtsProblem.html

Subject classifications