TOPICS
Search

Schläfli Graph


SchlaefliGraph

The Schläfli graph is a strongly regular graph on 27 nodes which is the graph complement of the generalized quadrangle GQ(2,4). It is the unique strongly regular graph with parameters (27,16,10,8) (Godsil and Royle 2001, p. 259). It is illustrated above in two embeddings, the first one corresponding to an order-9 generalized LCF notation.

It is distance-regular with intersection array {16,5;1,8}. It is also distance-transitive.

It is an integral graph with graph spectrum (-2)^(20)4^616^1.


See also

Generalized Quadrangle, Strongly Regular Graph

Explore with Wolfram|Alpha

References

Brouwer, A. E. "Schläfli Graph." http://www.win.tue.nl/~aeb/drg/graphs/Schlaefli.html.Brouwer, A. E.; Cohen, A. M.; and Neumaier, A. Distance Regular Graphs. New York: Springer-Verlag, pp. 103-104 and 312, 1989.Brouwer, A. E. and van Lint, J. H. "Strongly Regular Graphs and Partial Geometries." In Enumeration and Design: Papers from the conference on combinatorics held at the University of Waterloo, Waterloo, Ont., June 14-July 2, 1982 (Ed. D. M. Jackson and S. A. Vanstone). Toronto, Canada: Academic Press, pp. 85-122, 1984.DistanceRegular.org. "Schläfli Graph." http://www.distanceregular.org/graphs/schlafli.html.Godsil, C. and Royle, G. Algebraic Graph Theory. New York: Springer-Verlag, p. 259, 2001.Seidel, J. J. "Strongly Regular Graphs with (-1,1,0) Adjacency Matrix Having Eigenvalue 3." Lin. Alg. Appl. 1, 281-298, 1968.

Cite this as:

Weisstein, Eric W. "Schläfli Graph." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SchlaefliGraph.html

Subject classifications