TOPICS
Search

Rogers Mod 14 Identities


The Rogers mod 14 identities are a set of three Rogers-Ramanujan-like identities given by

A(q)=sum_(n=0)^(infty)(q^(n^2))/((q;q)_n(q;q^2)_n)
(1)
=((q^6,q^8,q^(14);q^(14))_infty)/((q;q)_infty)
(2)
=1+q+2q^2+3q^3+5q^4+7q^5+10q^6+14q^7+19q^8+26q^9+...
(3)
B(q)=sum_(n=0)^(infty)(q^(n^2+n))/((q;q)_n(q;q^2)_(n+1))
(4)
=((q^4,q^(10),q^(14);q^(14))_infty)/((q;q)_infty)
(5)
=1+q+2q^2+3q^3+4q^4+6q^5+9q^6+12q^7+17q^8+23q^9+...
(6)
C(q)=sum_(n=0)^(infty)(q^(n^2+2n))/((q;q)_n(q;q^2)_(n+1))
(7)
=((q^2,q^(12),q^(14);q^(14))_infty)/((q;q)_infty)
(8)
=1+q+q^2+2q^3+3q^4+4q^5+6q^6+8q^7+11q^8+15q^9+...
(9)

(OEIS A105780, A105781, and A105782).

The A-identity was found by Rogers (1894) and appears as formula 61 in the list of Slater (1952). The B- and C-identities were found by Rogers (1917) and appeared as formulas 60 and 59 respectively in Slater (1952).


See also

Rogers-Ramanujan Identities

This entry contributed by Andrew Sills

Explore with Wolfram|Alpha

References

Mc Laughlin, J.; Sills, A. V.; and Zimmer, P. "Dynamic Survey DS15: Rogers-Ramanujan-Slater Type Identities." Electronic J. Combinatorics, DS15, 1-59, May 31, 2008. http://www.combinatorics.org/Surveys/ds15.pdf.Rogers, L. J. "Second Memoir on the Expansion of Certain Infinite Products." Proc. London Math. Soc. 25, 318-343, 1894.Rogers, L. J. "On Two Theorems of Combinatory Analysis and Some Allied Identities." Proc. London Math. Soc. 16, 315-336, 1917.Slater, L. J. "Further Identities of the Rogers-Ramanujan Type." Proc. London Math. Soc. Ser. 2 54, 147-167, 1952.

Referenced on Wolfram|Alpha

Rogers Mod 14 Identities

Cite this as:

Sills, Andrew. "Rogers Mod 14 Identities." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/RogersMod14Identities.html

Subject classifications