See also
Non-Euclidean Geometry,
Riemannian Metric
Explore with Wolfram|Alpha
References
Besson, G.; Lohkamp, J.; Pansu, P.; and Petersen, P. Riemannian
Geometry. Providence, RI: Amer. Math. Soc., 1996.Buser, P. Geometry
and Spectra of Compact Riemann Surfaces. Boston, MA: Birkhäuser, 1992.Chavel,
I. Eigenvalues
in Riemannian Geometry. New York: Academic Press, 1984.Chavel,
I. Riemannian
Geometry: A Modern Introduction. New York: Cambridge University Press, 1994.Chern,
S.-S. "Finsler Geometry is Just Riemannian Geometry without the Quadratic Restriction."
Not. Amer. Math. Soc. 43, 959-963, 1996.do Carmo, M. P.
Riemannian
Geometry. Boston, MA: Birkhäuser, 1992.Referenced on Wolfram|Alpha
Riemannian Geometry
Cite this as:
Weisstein, Eric W. "Riemannian Geometry."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/RiemannianGeometry.html
Subject classifications