TOPICS
Search

Rényi's Polynomial


Rényi's polynomial is the polynomial

 P_(28)(x)=(4x^4+4x^3-2x^2+2x+1)×(-84x^(24)+28x^(20)-10x^(16)+4x^(12)-2x^8+2x^4+1)

(Rényi 1947, Coppersmith and Davenport 1991) that has 29 terms and whose square has 28, making it a sparse polynomial square.


See also

Sparse Polynomial Square

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Coppersmith, D. and Davenport, J. "Polynomials Whose Powers Are Sparse." Acta Arith. 58, 79-87, 1991.Rényi, A. "On the Minimal Number of Terms in the Square of a Polynomial." Acta Math. Hungar. 1, 30-34, 1947. Reprinted in Selected Papers of Alfred Rényi, Vol. 1. Budapest, pp. 44-47, 1976.

Referenced on Wolfram|Alpha

Rényi's Polynomial

Cite this as:

Weisstein, Eric W. "Rényi's Polynomial." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/RenyisPolynomial.html

Subject classifications