TOPICS
Search

Regularized Hypergeometric Function


Given a hypergeometric or generalized hypergeometric function _pF_q(a_1,...,a_p;b_1,...,b_q;z), the corresponding regularized hypergeometric function is defined by

 _pF^~_q(a_1,...,a_p;b_1,...,b_q;z)=(_pF_q(a_1,...,a_p;b_1,...,b_q;z))/(Gamma(b_1)...Gamma(b_q)),

where Gamma(z) is a gamma function. Regularized hypergeometric functions are implemented in the Wolfram Language as the functions Hypergeometric0F1Regularized[b, z], Hypergeometric1F1Regularized[a, b, z], Hypergeometric2F1Regularized[a, b, c, z], and in general, HypergeometricPFQRegularized[{a1, ...ap}, {b1, ..., bq}, z].


See also

Confluent Hypergeometric Function of the First Kind, Confluent Hypergeometric Function of the Second Kind, Confluent Hypergeometric Limit Function, Generalized Hypergeometric Function, Hypergeometric Function

Related Wolfram sites

http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric0F1Regularized/, http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1Regularized/, http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1Regularized/, http://functions.wolfram.com/HypergeometricFunctions/HypergeometricPFQRegularized/

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Regularized Hypergeometric Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/RegularizedHypergeometricFunction.html

Subject classifications