TOPICS
Search

Quiteprime


A positive integer n>1 is quiteprime iff all primes p<=sqrt(n) satisfy

 |2[n (mod p)]-p|<=p+1-sqrt(p).

Also define 2 and 3 to be quiteprimes. Then the first few quiteprimes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 137, ... (OEIS A050260), and the first few primes which are not quiteprimes are 131, 181, 197, 199, 233, 241, 263, 307, 311, 313, 331, 337, 353, 373, 379, ... (OEIS A050261).


See also

Veryprime

Explore with Wolfram|Alpha

References

Ferry, J. "RE: Veryprimes defined." sci.math posting, 09 Sep 1999.Sloane, N. J. A. Sequences A050260 and A050261 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Quiteprime

Cite this as:

Weisstein, Eric W. "Quiteprime." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Quiteprime.html

Subject classifications