TOPICS
Search

Polykite


PolykiteGrid

Polykites are polyforms obtained from a regular triangular grid superposed on a regular hexagonal grid (its dual), illustrated above.

Polykite

The monokite is therefore a quadrilateral (in particular, a kite) having angles 120 degrees, 90 degrees, 60 degrees, and 90 degrees, and edge lengths sqrt(3)/2, sqrt(3)/2, 1/2, and 1/2.

Polykites

The numbers of polykites with n=1, 2, ... components are 1, 2, 4, 10, 27, 85, 262, ... (OEIS A057786), the first few of which are illustrated above.


See also

Hat Polykite, Kite, Polyform

Explore with Wolfram|Alpha

References

Owen, B. "Polykites." http://members.optusnet.com.au/polyforms/2dforms/polykites/.Pegg, E. Jr. "Polyform Patterns." In Tribute to a Mathemagician (Ed. B. Cipra, E. D. Demaine, M. L. Demaine, and T. Rodgers). Wellesley, MA: A K Peters, pp. 119-125, 2004.Sloane, N. J. A. Sequence A057786 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Polykite

Cite this as:

Weisstein, Eric W. "Polykite." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Polykite.html

Subject classifications