TOPICS
Search

Pippenger Product


The Pippenger product is an unexpected Wallis-like formula for e given by

 e/2=(2/1)^(1/2)(2/34/3)^(1/4)(4/56/56/78/7)^(1/8)...
(1)

(OEIS A084148 and A084149; Pippenger 1980). Here, the nth term for n>=2 is given by

a_n=([(2^(n-1)-1)!!]^2[(2^n)!!]^2)/(2[(2^(n-1))!!]^2[(2^n-1)!!]^2)
(2)
=(2^(2^n-1)[Gamma(1/2+2^(n-2))]^4)/(pi[Gamma(1/2+2^(n-1))]^2),
(3)

where z!! is a double factorial and Gamma(z) is the gamma function.


See also

e, Wallis Formula

Explore with Wolfram|Alpha

References

Pippenger, N. "An Infinite Product for e." Amer. Math. Monthly 87, 391, 1980.Sloane, N. J. A. Sequences A084148 and A084149 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Pippenger Product

Cite this as:

Weisstein, Eric W. "Pippenger Product." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PippengerProduct.html

Subject classifications