Polynomials
which form the Sheffer sequence for
and have generating function
 |
(3)
|
The first few are
The Pidduck polynomials are related to the Mittag-Leffler polynomials
by
 |
(8)
|
(Roman 1984, p. 127).
See also
Mittag-Leffler Polynomial,
Sheffer Sequence
Explore with Wolfram|Alpha
References
Bateman, H. "The Polynomial of Mittag-Leffler." Proc. Nat. Acad. Sci. USA 26, 491-496, 1940.Boas, R. P.
and Buck, R. C. Polynomial
Expansions of Analytic Functions, 2nd print., corr. New York: Academic Press,
p. 38, 1964.Erdélyi, A.; Magnus, W.; Oberhettinger, F.;
and Tricomi, F. G. Higher
Transcendental Functions, Vol. 3. New York: Krieger, p. 248, 1981.Roman,
S. The
Umbral Calculus. New York: Academic Press, 1984.Referenced on
Wolfram|Alpha
Pidduck Polynomial
Cite this as:
Weisstein, Eric W. "Pidduck Polynomial."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PidduckPolynomial.html
Subject classifications