If isosceles triangles with apex angles
are erected on the sides of an arbitrary -gon , and if this process is repeated with the -gon formed by the free apices of the triangles, but with a different
value of ,
and so on until all values have been used in arbitrary order, then a regular
-gon
is formed whose centroid coincides with the centroid of .
Baker, H. F. "A Remark on Polygons." J. London Math. Soc.17, 162-164, 1942.Chang, G. "A Proof
of Douglas and Neumann by Circulant Matrices." Houston J. Math.8,
15-18, 1982.Chang G. and Davis, P. "A Circulant Formulation of
the Napoleon-Douglas-Neumann Theorem." Linear Alg. Appl.54, 87-95,
1983.Douglas, J. "Geometry of Polygons in the Complex Plane."
J. Math. Phys. Mass. Inst. Tech.19, 93-130, 1940.Gray,
S. B. "Generalizing the Petr-Douglas-Neumann Theorem on -gons." Amer. Math. Monthly110, 210-227,
2003.Neumann, B. H. "Some Remarks on Polygons." J.
London Math. Soc.16, 551-560, 1941.Neumann, B. H. "A
Remark on Polygons." J. London Math. Soc.17, 165-166, 1942.Pech,
P. "The Harmonic Analysis of Polygons and Napoleon's Theorem." J. Geometry
Graphics5, 13-22, 2001.Petr, K. "Ein Satz über
Vielecke." Arch. Math. Physik13, 29-31, 1908.Wong,
Y. C. "Some Extensions of the Douglas-Neumann Theorem for Concentric Polygons."
Amer. Math. Monthly75, 470-482, 1968.