TOPICS
Search

Pentanacci Number


The pentanacci numbers are a generalization of the Fibonacci numbers defined by P_0=0, P_1=1, P_2=1, P_3=2, P_4=4, and the recurrence relation

 P_n=P_(n-1)+P_(n-2)+P_(n-3)+P_(n-4)+P_(n-5)
(1)

for n>=5. They represent the n=5 case of the Fibonacci n-step numbers.

The first few terms for n=1, 2, ... are 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, ... (OEIS A001591).

The ratio of adjacent terms tends to the real root of P(x), namely 1.965948236645485... (OEIS A103814), sometimes called the pentanacci constant.

An exact formula for the nth pentanacci number can be given explicitly in terms of the five roots x_i of

 P(x)=x^5-x^4-x^3-x^2-x-1
(2)

as

 P_n=sum_(i=1)^5(x_i^n)/(-x_i^4+x_i^2+8x_i-1).
(3)

The pentanacci numbers have generating function

 x/(1-x-x^2-x^3-x^4-x^5)=x+x^2+2x^3+4x^4+8x^5+....
(4)

See also

Fibonacci n-Step Number, Fibonacci Number, Heptanacci Number, Hexanacci Number, Pentanacci Constant, Tetranacci Number, Tribonacci Number

Portions of this entry contributed by Tito Piezas III

Explore with Wolfram|Alpha

References

Sloane, N. J. A. Sequence A001591/M1122 and A103814 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Pentanacci Number

Cite this as:

Piezas, Tito III and Weisstein, Eric W. "Pentanacci Number." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PentanacciNumber.html

Subject classifications