TOPICS
Search

Parametric Latitude


The parametric latitude, also called the reduced latitude, is an auxiliary latitude denoted eta (Snyder 1987, p. 18), theta (Adams 1921), or beta (Karney 2023). It gives the latitude on a sphere of radius a for which the parallel has the same radius as the parallel of geodetic latitude phi and the ellipsoid through a given point. It is given by

 beta=tan^(-1)(sqrt(1-e^2)tanphi)
(1)

(Snyder 1987, p. 18), where the eccentricity e of an ellipsoid of rotation with equatorial radius a and polar semi-axis b is defined as

 e^2=(a^2-b^2)/(a^2).
(2)

In terms the flattening f,

 beta=tan^(-1)((1-f)tanphi)
(3)

(Karney).

In series form,

 beta=phi-e_1sin(2phi)+1/2e_1^2sin(4phi)-1/3e_1^3sin(6phi)+...,
(4)

where

 e_1=(1-sqrt(1-e^2))/(1+sqrt(1-e^2)).
(5)

See also

Authalic Latitude, Latitude

Explore with Wolfram|Alpha

References

Adams, O. S. "Latitude Developments Connected with Geodesy and Cartography with Tables, Including a Table for Lambert Equal-Area Meridional Projections." Spec. Pub. No. 67. U. S. Coast and Geodetic Survey, 1921.Karney, C. F. F. "On Auxiliary latitudes." 21 May 2023. https://arxiv.org/abs/2212.05818.Snyder, J. P. Map Projections--A Working Manual. U. S. Geological Survey Professional Paper 1395. Washington, DC: U. S. Government Printing Office, p. 18, 1987.

Referenced on Wolfram|Alpha

Parametric Latitude

Cite this as:

Weisstein, Eric W. "Parametric Latitude." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ParametricLatitude.html

Subject classifications