TOPICS
Search

Parallel Planes


ParallelPlanes

Two planes that do not intersect are said to be parallel. Two planes specified in Hessian normal form are parallel iff |n_1^^·n_2^^|=1 or n_1^^xn_2^^=0 (Gellert et al. 1989, p. 541).

Two planes that are not parallel always intersect in a line.


See also

Hessian Normal Form, Parallel, Parallel Lines, Plane, Plane-Plane Intersection

Explore with Wolfram|Alpha

References

Kern, W. F. and Bland, J. R. Solid Mensuration with Proofs, 2nd ed. New York: Wiley, p. 9, 1948.Gellert, W.; Gottwald, S.; Hellwich, M.; Kästner, H.; and Künstner, H. (Eds.). VNR Concise Encyclopedia of Mathematics, 2nd ed. New York: Van Nostrand Reinhold, 1989.

Referenced on Wolfram|Alpha

Parallel Planes

Cite this as:

Weisstein, Eric W. "Parallel Planes." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ParallelPlanes.html

Subject classifications