TOPICS
Search

Pandigital Fraction


A fraction containing each of the digits 1 through 9 is called a pandigital fraction. The following table gives the number of pandigital fractions which represent simple unit fractions. The numbers of pandigital fractions for 1/1, 1/2, 1/3, ... are 0, 12, 2, 4, 12, 3, 7, 46, 3, ... (OEIS A054383).

f#fractions
1/212(6729)/(13458),(6792)/(13584),(6927)/(13854),(7269)/(14538),(7293)/(14586),(7329)/(14658),
(7692)/(15384),(7923)/(15846),(7932)/(15864),(9267)/(18534),(9273)/(18546),(9327)/(18654)
1/32(5823)/(17469),(5832)/(17496)
1/44(3942)/(15768),(4392)/(17568),(5796)/(23184),(7956)/(31824)
1/512(2697)/(13485),(2769)/(13845),(2937)/(14685),(2967)/(14835),(2973)/(14865),(3297)/(16485),
(3729)/(18645),(6297)/(31485),(7629)/(38145),(9237)/(46185),(9627)/(48135),(9723)/(48615)
1/63(2943)/(17658),(4653)/(27918),(5697)/(34182)
1/77(2394)/(16758),(2637)/(18459),(4527)/(31689),(5274)/(36918),(5418)/(37926),(5976)/(41832),
(7614)/(53298)
1/846(3187)/(25496),(4589)/(36712),(4591)/(36728),(4689)/(37512),(4691)/(37528),(4769)/(38152),
(5237)/(41896),(5371)/(42968),(5789)/(46312),(5791)/(46328),(5839)/(46712),(5892)/(47136),
(5916)/(47328),(5921)/(47368),(6479)/(51832),(6741)/(53928),(6789)/(54312),(6791)/(54328),
(6839)/(54712),(7123)/(56984),(7312)/(58496),(7364)/(58912),(7416)/(59328),(7421)/(59368),
(7894)/(63152),(7941)/(63528),(8174)/(65392),(8179)/(65432),(8394)/(67152),(8419)/(67352),
(8439)/(67512),(8932)/(71456),(8942)/(71536),(8953)/(71624),(8954)/(71632),(9156)/(73248),
(9158)/(73264),(9182)/(73456),(9316)/(74528),(9321)/(74568),(9352)/(74816),(9416)/(75328),
(9421)/(75368),(9523)/(76184),(9531)/(76248),(9541)/(76328)
1/93(6381)/(57429),(6471)/(58239),(8361)/(75249)
1/(10)0
1/(11)0
1/(12)4(3816)/(45792),(6129)/(73548),(7461)/(89532),(7632)/(91584)

See also

Pandigital, Pandigital Number, Steffi Problem, Unit Fraction

Explore with Wolfram|Alpha

References

Friedman, M. J. Scripta Math. 8.Sloane, N. J. A. Sequence A054383 in "The On-Line Encyclopedia of Integer Sequences."Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, pp. 27-28, 1986.

Referenced on Wolfram|Alpha

Pandigital Fraction

Cite this as:

Weisstein, Eric W. "Pandigital Fraction." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PandigitalFraction.html

Subject classifications