TOPICS
Search

Pandiagonal Semiperfect Magic Cube


A pandiagonal semiperfect magic cube is a semiperfect magic cube that remains semiperfect when any single orthogonal section is "restacked" cyclically so that the ordering of any set of n plane sections becomes 123...n, 23...n1, 3...n12, ..., or n123... (Benson and Jacoby 1981, p. 4).

There is no pandiagonal semiperfect magic cube of order 3 (Benson and Jacoby 1988, p. 14).

PandiagonalSemiperfectMagicCube4
PandiagonalSemiperfectMagicCube5

The order 4 and 5 magic cubes shown above are pandiagonal semiperfect magic (Benson and Jacoby 1988, pp. 15-23 and 30).


See also

Magic Cube, Nasik Cube, Pandiagonal Perfect Magic Cube, Perfect Magic Cube, Semiperfect Magic Cube

Explore with Wolfram|Alpha

References

Benson, W. H. and Jacoby, O. Magic Cubes: New Recreations. New York: Dover, 1981.Gardner, M. "Magic Squares and Cubes." Ch. 17 in Time Travel and Other Mathematical Bewilderments. New York: W. H. Freeman, pp. 213-225, 1988.Pickover, C. A. The Zen of Magic Squares, Circles, and Stars: An Exhibition of Surprising Structures Across Dimensions. Princeton, NJ: Princeton University Press, 2002.

Referenced on Wolfram|Alpha

Pandiagonal Semiperfect Magic Cube

Cite this as:

Weisstein, Eric W. "Pandiagonal Semiperfect Magic Cube." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PandiagonalSemiperfectMagicCube.html

Subject classifications