TOPICS
Search

Octal


The base 8 notational system for representing real numbers. The digits used are 0, 1, 2, 3, 4, 5, 6, and 7, so that 8_(10) (8 in base 10) is represented as 10_8 (10=1·8^1+0·8^0) in base 8. The following table gives the octal equivalents of the first few decimal numbers.

1111132125
2212142226
3313152327
4414162430
5515172531
6616202632
7717212733
81018222834
91119232935
101220243036

The song "New Math" by Tom Lehrer (That Was the Year That Was, 1965) explains how to compute 342-173 in octal. (The answer is 342_8-173_8=147_8.)


See also

Base, Binary, Decimal, Hexadecimal, Quaternary, Ternary

Explore with Wolfram|Alpha

References

Lauwerier, H. Fractals: Endlessly Repeated Geometric Figures. Princeton, NJ: Princeton University Press, pp. 9-10, 1991.Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, pp. 72-73, 1986.

Referenced on Wolfram|Alpha

Octal

Cite this as:

Weisstein, Eric W. "Octal." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Octal.html

Subject classifications